Explicit multi-matrix topological expansion for quaternionic random matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Right Eigenvalues for Quaternionic Matrices: a Topological Approach

We apply the Lefschetz Fixed Point Theorem to show that every square matrix over the quaternions has right eigenvalues. We classify them and discuss some of their properties such as an analogue of Jordan canonical form and diagonalization of elements of the compact symplectic group Sp(n).

متن کامل

Random right eigenvalues of Gaussian quaternionic matrices

We consider a random matrix whose entries are independent Gaussian variables taking values in the field of quaternions with variance 1/n. Using logarithmic potential theory, we prove the almost sure convergence, as the dimension n goes to infinity, of the empirical distribution of the right eigenvalues towards some measure supported on the unit ball of the quaternions field. Some comments on mo...

متن کامل

Duality of Real and Quaternionic Random Matrices

We show that quaternionic Gaussian random variables satisfy a generalization of the Wick formula for computing the expected value of products in terms of a family of graphical enumeration problems. When applied to the quaternionic Wigner and Wishart families of random matrices the result gives the duality between moments of these families and the corresponding real Wigner and Wishart families.

متن کامل

Topological Expansion in the Cubic Random Matrix Model

In this paper, we study the topological expansion in the cubic random matrix model, and we evaluate explicitly the expansion coefficients for genus 0 and 1. For genus 0 our formula coincides with the one in [6]. For higher genus, we obtain the asymptotic behavior of the coefficients in the expansion as the number of vertices of the associated graphs tends to infinity. Our study is based on the ...

متن کامل

Topological expansion of the chain of matrices

We solve the loop equations to all orders in 1/N, for the Chain of Matrices matrix model (with possibly an external field coupled to the last matrix of the chain). We show that the topological expansion of the free energy, is, like for the 1 and 2-matrix model, given by the symplectic invariants of [19]. As a consequence, we find the double scaling limit explicitly, and we discuss modular prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2016

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.4940338